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Fourier�Jacobi series with nonnegative Fourier�Jacobi coefficients are considered.
Under special restrictions on the Jacobi weight function, we establish in terms of
Fourier�Jacobi coefficients a necessary and sufficient condition in order that
the sum of the Fourier�Jacobi series should possess certain structural properties.
� 1996 Academic Press, Inc.

1. INTRODUCTION

The trigonometric series

f (x)= :
�

n=0

an cos nx, an a 0, (1)

and

g(x)= :
�

n=0

an sin nx, an a 0, (2)

have attracted mathematicians' attention for a long time. The first results
in this area belong to Fatou [3, 4]. It is easy to prove by applying Abel's
transformation that the series (1) and (2) converge uniformly on any inter-
val [$, ?&$], 0<$<?. In [2] a necessary and sufficient condition is
given for the uniform convergence of the series (2) on [0, 2?]. Making use
of this result, it is easy to give an example of a trigonometric series that
converges uniformly but not absolutely on [0, 2?]; such a series is
��

n=2 sin nx�n ln n.
The interest in the investigation of the series (1) and (2) can be explained

in two ways. First of all if one wishes to prove a statement concerning
general trigonometric series, then very often it is helpful to have at one's
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disposal the same statement proved for a sufficiently large number of par-
ticular cases. On the other hand, some series of type (1) and (2) play an
important role in the general theory of trigonometric series. For example,
when dealing with the Gibbs phenomenon for functions of bounded varia-
tion, it is essential to know the behavior of the partial sums of the series
��

n=1 sin nx�n in a neighborhood of x=0. Besides, these partial sums are
useful in the construction of Feje� r's examples of functions whose Fourier
series converge everywhere on [0, 2?] but do not do so uniformly. We note
also that the necessary and sufficient condition for the function (1) or
(2) to belong to the space L p([0, 2?]), p>1, plays a significant role in
obtaining the main results of [6, 7] (the condition is ��

n=1 a p
n n p&2<�).

We will write f # Lip # (0<#�1) on [a, b] if there is a constant M>0
such that \x1 , x2 # [a, b] the inequality

| f (x2)& f (x1)|�M } |x2&x1 | #

holds and, moreover, M does not depend on x1 , x2 . In [9], Lorentz has
found a necessary and sufficient condition for a function of type (1) or (2)
to belong to the class Lip # (0<#<1) on [0, 2?].

In this paper we will prove a similar statement for the Fourier�Jacobi
series.

2. NOTATION

Let C be the space of functions that are continuous on [&1, 1],
& f &C=& f &=max[ | f (x)| : |x|�1], and L:, ; (:, ;>&1) be the space of
functions that are Lebesgue integrable on [&1, 1] with the weight function
(1&x): (1+x);. By N we denote the set of all natural numbers and by W
the set of all nonnegative integers. Hn (n # W ) is the set of all algebraic
polynomials of degree at most n. For f # C, n # W, we set

En( f )C=En( f )=inf[& f &Qn&C : Q # Hn].

En( f ) is the best approximation of f in the C metric by algebraic poly-
nomials of degree at most n. [J (:, ;)

n ]�
0 =[Jn]�

0 is the system of Jacobi
polynomials, orthonormal on [&1, 1] with the weight function
(1&x): (1+x); (:, ;>&1), Jn(1)>0 \n # W. We denote by a (:, ;)

n ( f )=
an( f ) (n # W ) the Fourier�Jacobi coefficients of f # L:, ; . By S (:, ;)

n ( f )=
Sn( f ) (n # W ) we denote the n th partial sum of the Fourier�Jacobi series
��

n=0 an( f ) Jn . For a # R the symbol [a] denotes the greatest integer not
exceeding a. By A and by A with arguments between parentheses we
denote, (in general, different) absolute positive constants and positive
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constants depending on the corresponding arguments, respectively. For
two sequences [:n]�

0 , [;n]�
0 of positive numbers we will write :n t;n if

there exist constants A1 , A2>0, independent of n, such that

A1;n�:n�A2 ;n (n # W ).

1 denotes Euler's Gamma function.

3. THE MAIN RESULTS

The primary purpose of this paper is to prove the following.

Theorem. Let &1�2�;�:<1�2 or &1�2�:�;<1�2 and assume
that f # C, an( f )�0 \n # W. Then

f = :
�

n=0

an( f ) Jn in the C metric; (3)

in addition, for the relations

f (m)= :
�

n=m

an( f ) J (m)
n (m # W ) in the C metric (4)

and

f (m) # Lip #, 0<#�1, (5)

to be valid simultaneously, it is necessary and sufficient that the inequality

:
n

k=m

ak( f ) k5�2+2m+_�A(m, :, ;) } (n+1)2&2# (6)

should hold, where _=max[:, ;], n, n&m # W.

Before we proceed to prove the theorem, we mention two papers dealing
with the same type of problems. In [10] one has established in terms of
the sequence [cn]�

0 a sufficient condition for the function ��
n=0 cnJ (:, ;)

n

(:, ;>&1) to have r continuous derivatives on (&1, 1). In [8] the author
has imposed on the Fourier�Jacobi coefficients special monotonicity condi-
tions and has established, under certain restrictions on : and ;, a necessary
and sufficient condition in terms of the Fourier�Jacobi coefficients in order
that the Fourier�Jacobi series be convergent in the L:, ; metric.
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4. PRELIMINARY LEMMAS

We will use the following formula [12, formulas (4.21.7) and (4.3.4)]

(J (:, ;)
n )(m)=Cn(:, ;, m) J (:+m, ;+m)

n&m , n, m&m # W, (7)

where

Cn(:, ;, m)

=(1(n+1) 1(n+:+;+m+1) 1&1(n&m+1) 1 &1(n+:+;+1))1�2;

for large n we have

Cn(:, ;, m)tnm. (8)

We will also make use of the following estimate [12, formula (7.32.2)]:

&Jn&�A(:, ;)(n+1)_+1�2, n # W, _=max[:, ;]�& 1
2. (9)

Lemma 1. Let &1�2�:, ;�1�2, k # W, 0�(2k+1) t�?. Then

Jk(1)&Jk(cos t)�A(:, ;) k:+5�2t2. (10)

Proof. Let x1 be the largest zero of Jk (k # N), x1=cos .1 , 0<.<?.
Since &1�2�:, ;�1�2, we have .1�?�(2k+1) [12, formula (6.21.5)]
and, therefore, the inequality (2k+1) t�? implies cos t�x1 . Further,

Jk(1)&Jk(cos t)=|
1

cos t
J$k(z) dz�J$k(x1)(1&cos t). (11)

As proved in [13], we have

J$k(x1)�A(:, ;) k:+5�2. (12)

From (11) and (12) we obtain at once (10). Lemma 1 is proved.

For f # C we introduce (C, 1)-sums with respect to the system [Jn]�
0 :

_(:, ;)
n ( f )=_n( f )= :

n

k=0
\1&

k
n+1+ ak( f ), n # W.

We need the following proposition [1, p. 32].
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Proposition. If ;�:<1�2, then

&_n&C � C�A(:, ;), n # W. (13)

For :=;=0, inequality (13) has been proved in [5].

Lemma 2. Let ;�:<1�2, f # C, an( f )�0 \n # W. Then

&Sn( f )&�& f &, n # W. (14)

Proof. We may assume that n�1 since inequality (14) is trivial for
n=0. We introduce the de la Valle� e�Poussin sums for f by

{ (:, ;)
n ( f )={n( f )=

1
n

:
2n&1

k=n

Sk( f )=2_2n&1( f )&_n&1( f ). (15)

By virtue of (15) and (13), \f # C, \n # W we have

&{n( f )&�A(:, ;) & f &. (16)

Let Qm # Hm (m # N), & f&Qm &=Em( f ); since {m(Qm)=Qm , in view of
(16) we obtain

& f&{m( f )&�& f&Qm &+&{m( f&Qm)&�A(:, ;) Em( f ). (17)

We will make use of the following easily verifiable equality:

{m( f )=Sm( f )+
1
m

:
m&1

k=1

(m&k) am+k( f ) Jm+k .

If m�n, then we have

&Sn( f )&=Sn( f ; 1)�Sm( f ; 1)

={m( f ; 1)&
1
m

:
m&1

k=1

(m&k) am+k( f ) Jm+k(1)

�{m( f ; 1)=&{m( f )&. (18)

If in (18) we let m � � and we take into account (17), then we obtain (14).
Lemma 2 is proved.
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Lemma 3. Under the conditions of Lemma 2, we have

& f &Sn( f )&�A(:, ;) E[n�2]( f ). (19)

Proof. We may assume that n�1 since inequality (19) is trivial for
n=0. Since {[n�2]( f ) # Hn , we have

f &Sn( f )= f &{[n�2]( f )+Sn({[n�2]( f )& f )

and, consequently, we obtain

& f &Sn( f )&�& f &{[n�2]( f )&+&Sn({[n�2]( f )& f )&. (20)

Making use of (17) we derive

& f &{[n�2]( f )&�A(:, ;) E[n�2]( f ). (21)

Taking into account (15), one can easily verify that

{n( f )=2 :
2n&1

k=n \1&
k
2n+ ak( f ) Jk+ :

n&1

k=0

ak( f ) Jk . (22)

It follows from (27) that

0, k�_n
2&

ak( f &{[n�2]( f ))={\ k
[n�2]

&1+ ak( f ), _n
2&<k�2 _n

2&&1,

ak( f ), k�2 _n
2&

which implies that

ak( f &{[n�2]( f ))�0, k # W. (23)

In view of (23) we can apply (14) to f &{[n�2]( f ):

&Sn( f &{[n�2]( f ))&�& f &{[n�2]( f )&�A(:, ;) E[n�2]( f ). (24)

Combining (20),(21), and (24), we obtain (19). Lemma 3 is proved.

Remark. For :=;=0, Lemmas 2 and 3 have been proved in [11].
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5. PROOF OF THE THEOREM.

We are now in position to prove the theorem stated in Section 3. Assume
that &1�2�;�:<1�2. First we note that the expansion (3) follows
directly from (19). We will prove now that if the estimate (6) holds, then
the relations (4) and (5) are simultaneously valid. First we prove that

:
�

k=m

ak( f )(k+1)2m+:+1�2<�. (25)

We introduce

\n= :
n

k=m

ak( f )(k+1)2m+:+5�2, m�m; \m&1=0.

Making use of Abel's transformation, we obtain

:
�

k=m

ak( f )(k+1)2m+:+1�2= :
�

k=m

\k((k+1)&2&(k+2)&2)

�A(m, :, ;) :
�

k=m

(k+1)&1&2#<�.

Differentiating formally the series (3) m times, we obtain the series
��

n=m an( f ) J (m)
n . Taking into consideration (7)�(9) and (25), we obtain

:
�

k=m

ak( f ) &J (m)
k &�A(:, ;, m) :

�

k=m

ak( f )(k+1):+2m+1�2<�

and, consequently, f (m) # C and we have the following Fourier�Jacobi series
expansion in the C metric:

f (m)= :
�

k=m

ak( f )(Jk)(m)= :
�

k=m

ak( f ) Ck(:, ;, m) J (:+m, ;+m)
k&m .

Let x1 , x2 # [&1, 1], x1 {x2 . We have

f (m)(x2)& f (m)(x1)

= :
�

k=m

ak( f ) Ck(:, ;, m)(J (:+m, ;+m)
k&m (x2)&J (:+m, ;+m)

k&m (x1)).
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Assume that M # W, M�m. Then

| f (m)(x2)& f (m)(x1)|� :
M

k=m

ak( f ) Ck(:, ;, m)

_|J (:+m, ;+m)
k&m (x2)&J (:+m, ;+m)

k&m (x1)|

+2 :
�

k=M+1

ak( f ) Ck(:, ;, m) &J (:+m, ;+m)
k&m &C

�A(m, :, ;) |x2&x1 | } :
M

k=m

ak( f ) km &(J (:+m, ;+m)
k&m )$&

+A(m, :, ;) :
�

k=M+1

ak( f ) k:+2m+1�2

=S1+S2 . (26)

S2 has been estimated above:

S2�A(m, :, ;) } (M+1)&2#. (27)

Making use of (7)�(9) and (6), we obtain

S1�A(m, :, ;) } |x2&x1 | } (M+1)2&6#. (28)

It follows from (26)�(28) that

| f (m)(x2)& f (m)(x1)|

�A(m, :, ;)((M+1)&2#+|x2&x1 | (M+1)2&2#). (29)

We set

M+1=[m+|x2&x1 |&1�2+2].

It is obvious that

|x2&x1 |&1�2�M+1�A(m) |x2&x1 |&1�2. (30)

Combining the estimates (29) and (30), we derive that

| f (m)(x2)& f (m)(x1)|�A(m, :, ;) } |x2&x1 | #,

i.e., f (m) # Lip # on, [&1, 1].
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It remains to prove that if the relations (4) and (5) hold simultaneously,
then inequality (6) is valid. We have

} :
�

k=m

ak( f )[J (m)
k (1)&J (m)

k (cos t)]}=| f (m)(1)& f (m)(cos t)|

�A } (1&cos t)#�A } t2#,

0�t�?. (31)

Making use of Lemma 1, we obtain

} :
�

k=m

ak( f )[J (m)
k (1)&J (m)

k (cos t)] }
�A(m, :, ;) :

[?(2t)&1+m&2&1]

k=m

ak( f ) } km

_[J (:+m, ;+m)
k&m (1)&J (:+m, ;+m)

k&m (cos t)]

�A(m, :, ;) t2 :
[? } (2t)&1+m&2&1]

k=m

ak( f ) } k:+2m+5�2. (32)

It follows from (31) and (32) that

:
[?(2t)&1+m&1�2]

k=m

ak( f ) } k:+2m+5�2�A(m, :, ;) t2#&2. (33)

Setting t=?�(2n&2m+1) in (33), we obtain

:
n

k=m

ak( f ) } k:+2m+5�2�A(m, :, ;)(n+1)2&2#.

This completes the proof of the theorem in the case &1�2�;�:<1�2.
The case &1�2�:�;<1�2 can be easily reduced to the first one if (i) we
apply the assertions of the theorem just proved to the function
.(x)= f (&x) and (ii) we take into account that \n # W, \x # R we have
J (;, :)

n (&x)=(&1)n J (:, ;)
n (x).

Corollary. Let f # C, an( f ) a 0. Then (i) the relation (3) holds; (ii) the
relations (4) and (5) are simultaneously valid if and only if \n # W we have

an( f )�A(m, :, ;) } (n+1)&3�2&2m&_&2#.
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